代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#********************************************
# 多维度 QDA 收敛曲线对比(中文可视化)
#********************************************
import numpy as np
import time
import matplotlib.pyplot as plt


# --- 解决中文显示和负号问题 ---
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
# --------------------------------

# --- 目标函数 ---
def func_double_well(matrix_y):
y = 0
l, k, h = 3.0, 0.5, 20.0
for i in matrix_y:
y += h * pow((pow(i, 2) - pow(l, 2)), 2) / pow(l, 4) + k * i
return y

def func_rastrigin(matrix_y):
y = 10 * len(matrix_y)
y += np.sum(matrix_y**2 - 10 * np.cos(2 * np.pi * matrix_y))
return y

def func_griewank(matrix_y):
a, b, y = 0, 1, 0
index = 1
for i in matrix_y:
a = a + i * i
b = b * np.cos(i / np.sqrt(index))
index += 1
y = 1 + 1 / 4000 * a - b
return y

# --- 辅助函数:最大/最小 walker(原始版本) ---
def max_min_id(matrix, flag, func_to_use):
if matrix.shape[1] == 0:
return -1
walker_id = 0
temp = func_to_use(matrix[:, 0])
for j in range(matrix.shape[1] - 1):
if temp < func_to_use(matrix[:, j + 1]) and flag == 0: # max condition
walker_id = j + 1
temp = func_to_use(matrix[:, j + 1])
if temp > func_to_use(matrix[:, j + 1]) and flag == 1: # min condition
walker_id = j + 1
temp = func_to_use(matrix[:, j + 1])
return walker_id

# --- 辅助函数:均值替换(兼容原始 max_min_id) ---
def mid_exchange(matrix, func_to_use):
mid_walker = np.mean(matrix, axis=1)
worst_id = max_min_id(matrix, 0, func_to_use)
matrix[:, worst_id] = mid_walker
return matrix

# --- 标准 QDA 算法(按迭代次数记录) ---
def qda_original_record(dim, walker_n, func_to_use, max_total_iter):
acc = 1e-6
ite_times = 0
begin, end = -6, 6
scale = end - begin
a = np.random.uniform(begin, end, (dim, walker_n))
b = np.zeros((dim, walker_n))
ite_flag = True
convergence_data = []

while scale > acc and ite_times < max_total_iter:
while ite_flag and ite_times < max_total_iter:
ite_times += 1
for j in range(walker_n):
for i in range(dim):
b[i, j] = np.random.normal(a[i, j], scale)
while not (begin <= b[i, j] <= end):
b[i, j] = np.random.normal(a[i, j], scale)

if func_to_use(b[:, j]) > func_to_use(a[:, j]):
b[:, j] = a[:, j]

mid_exchange(b, func_to_use)
a[:, :] = b[:, :]

min_val = func_to_use(a[:, max_min_id(a, 1, func_to_use)])
convergence_data.append(min_val)

ite_flag = False
for i in range(dim):
if np.var(a[i, :]) > pow(scale, 2):
ite_flag = True

scale /= 2
ite_flag = True

return convergence_data

# --- 差解接收 QDA 算法(按迭代次数记录) ---
def qda_diff_accept_record(dim, walker_n, func_to_use, max_total_iter):
acc = 1e-6
ite_times = 0
begin, end = -6, 6
scale = end - begin
a = np.random.uniform(begin, end, (dim, walker_n))
b = np.zeros((dim, walker_n))
ite_flag = True
convergence_data = []

while scale > acc and ite_times < max_total_iter:
while ite_flag and ite_times < max_total_iter:
ite_times += 1
for j in range(walker_n):
old_fitness = func_to_use(a[:, j])
for i in range(dim):
b[i, j] = np.random.normal(a[i, j], scale)
while not (begin <= b[i, j] <= end):
b[i, j] = np.random.normal(a[i, j], scale)
new_fitness = func_to_use(b[:, j])

if new_fitness > old_fitness:
acceptance_prob = 1.0 / (ite_times)
if np.random.rand() >= acceptance_prob:
b[:, j] = a[:, j]

mid_exchange(b, func_to_use)
a[:, :] = b[:, :]

min_val = func_to_use(a[:, max_min_id(a, 1, func_to_use)])
convergence_data.append(min_val)

ite_flag = False
for i in range(dim):
if np.var(a[i, :]) > pow(scale, 2):
ite_flag = True

scale /= 2
ite_flag = True

return convergence_data

# --- 绘制多维度对比 ---
def plot_multi_dim(dim_list, walker_n, func_to_use, func_name, num_runs, max_total_iter):
print(f"--- QDA 算法对比测试 ---")
print(f"目标函数: {func_name}")
print(f"种群数: {walker_n}")
print(f"每组运行次数: {num_runs}")
print(f"最大迭代次数: {max_total_iter}")
for dim in dim_list:
print(f"--- 维度: {dim}D ---")
print("-" * 25)

n = len(dim_list)
rows = (n + 1) // 2
plt.figure(figsize=(15, 6 * rows))

for i, dim in enumerate(dim_list):
start_time = time.time()

standard_runs = [qda_original_record(dim, walker_n, func_to_use, max_total_iter) for _ in range(num_runs)]
optimized_runs = [qda_diff_accept_record(dim, walker_n, func_to_use, max_total_iter) for _ in range(num_runs)]

end_time = time.time()
print(f"维度 {dim}D 测试完成,耗时: {end_time - start_time:.2f} 秒")

# 统一数据长度
max_len = max_total_iter
standard_padded = np.array([run + [run[-1]] * (max_len - len(run)) for run in standard_runs])
optimized_padded = np.array([run + [run[-1]] * (max_len - len(run)) for run in optimized_runs])

if len(standard_padded) == 0 or len(optimized_padded) == 0:
print(f"警告:维度 {dim}D 的收敛数据点过少,无法绘制有意义的曲线。")
continue

avg_orig = np.mean(standard_padded, axis=0)
avg_diff = np.mean(optimized_padded, axis=0)

x_axis = np.arange(len(avg_orig))

ax = plt.subplot(rows, 2, i + 1)
ax.plot(x_axis, avg_orig, label="标准版", color='blue', linewidth=2)
ax.plot(x_axis, avg_diff, '--', label="优化版", color='red', linewidth=2)

ax.set_title(f"维度: {dim}D", fontsize=14)
ax.set_xlabel("迭代次数", fontsize=12)
ax.set_ylabel("平均最优函数值", fontsize=12)

all_values = np.concatenate((avg_orig, avg_diff))
if np.all(all_values > 0):
ax.set_yscale('log')

ax.grid(True, linestyle=':', alpha=0.6)
ax.legend(loc='upper right', fontsize=10)

plt.suptitle(f"QDA 算法收敛曲线对比 ({func_name})", fontsize=20)
plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.show()

# --- 示例调用 ---
if __name__ == "__main__":
test_dimensions = [2, 5, 10, 20, 30]
test_walker_n = 50
test_func = func_rastrigin
test_func_name = "rastrigin"
num_runs = 10
max_total_iter = 100000

plot_multi_dim(test_dimensions, test_walker_n, test_func, test_func_name, num_runs, max_total_iter)

代码测试

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
--- QDA 算法对比测试 ---
目标函数: rastrigin
种群数: 50
每组运行次数: 10
最大迭代次数: 100000
--- 维度: 2D ---
--- 维度: 5D ---
--- 维度: 10D ---
--- 维度: 20D ---
--- 维度: 30D ---
-------------------------
维度 2D 测试完成,耗时: 12.87 秒
维度 5D 测试完成,耗时: 356.66 秒
维度 10D 测试完成,耗时: 1652.73 秒
维度 20D 测试完成,耗时: 3456.55 秒
维度 30D 测试完成,耗时: 4136.02 秒

image

image

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
--- QDA 算法对比测试 ---
目标函数: double_well
种群数: 50
每组运行次数: 10
最大迭代次数: 100000
--- 维度: 2D ---
--- 维度: 5D ---
--- 维度: 10D ---
--- 维度: 20D ---
--- 维度: 30D ---
-------------------------
维度 2D 测试完成,耗时: 4.90 秒
维度 5D 测试完成,耗时: 97.32 秒
维度 10D 测试完成,耗时: 2085.30 秒
维度 20D 测试完成,耗时: 6700.07 秒
维度 30D 测试完成,耗时: 13188.60 秒

image

image

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
--- QDA 算法对比测试 ---
目标函数: griewank
种群数: 50
每组运行次数: 10
最大迭代次数: 10000
--- 维度: 2D ---
--- 维度: 5D ---
--- 维度: 10D ---
--- 维度: 20D ---
--- 维度: 30D ---
-------------------------
维度 2D 测试完成,耗时: 46.63 秒
维度 5D 测试完成,耗时: 26.75 秒
维度 10D 测试完成,耗时: 112.92 秒
维度 20D 测试完成,耗时: 542.88 秒
维度 30D 测试完成,耗时: 1241.56 秒

image

image